DeepMindがAIベースのコンピュータプログラム作成システム「AlphaCode」を開発し、競技プログラミングコンテストへの参加をシミュレートしたところ、同システムはコンテスト参加者の54%以内の順位に相当する成績を収めた。
この記事は会員限定です。会員登録(無料)すると全てご覧いただけます。
DeepMindは2022年2月2日(英国時間)、AIベースのコンピュータプログラム作成システム「AlphaCode」を開発し、競技プログラミングコンテストへの参加をシミュレートしたところ、同システムはコンテスト参加者の54%以内の順位に相当する成績を収めたと発表した。
こうしたコード生成システムが競技プログラミングコンテストで人間と張り合えるレベルに達した初の例だとしている。
AlphaCodeのコード生成能力
AlphaCodeはこのシミュレーションで、クリティカルシンキング、ロジック、アルゴリズム、コーディング、自然言語理解などを組み合わせた新しい問題を解決した。AlphaCodeは、トランスフォーマーベースの言語モデルを使用して膨大なコードを生成し、それらを賢くフィルタリングして、有望なプログラムの小さなセットを抽出するものであり、DeepMindは、このシステムを解説した論文のプレプリントを公開している。
競技プログラミングコンテストでは、参加者は一連の長い問題文を受け取り、それを解決するプログラムを数時間で作成する。
典型的な問題は、一定の制約の中で道路や建物を配置する方法を求めたり、カスタムボードゲームに勝つための戦略を立てたりするといったものだ。参加者は主に、問題をどれだけ解いたかで順位付けされる。企業はこうしたコンテストを採用ツールとして利用しており、ソフトウェアエンジニアの採用プロセスでも、同様の問題がよく出題される。
こうした競技プログラミングコンテストで優秀な成績を上げるために必要な問題解決能力は、既存のAIシステムの能力を超えている。だが、DeepMindは、大規模トランスフォーマーモデルの進歩と、大規模なサンプリングおよびフィルタリングを組み合わせることで、AIシステムが解決できる問題の数を大幅に増やすことに成功した。
関連記事
- 2022年の「AI/機械学習」はこうなる! 8大予測
2021年は、Transformerを中心に技術が発展し、日本語モデルの利用環境も整ってきた。また、ローコード/ノーコードをうたうAIサービスも登場した。2022年の「AI/機械学習」界わいはどう変わっていくのか? 幾つかの情報源を参考に、8個の予測を行う。 - データ中心のAI(DCAI:Data-Centric AI)とは?
用語「データ中心のAI」について説明。性能を向上させるために、モデルやアルゴリズムを改善する「モデル中心」のアプローチではなく、機械学習ライフサイクル全体を通じてデータを改善する「データ中心」のアプローチの方が大切だとする、AIの開発方法に関する考え方を指す。 - 米英で疾病の「診断」を下すAIドクターが登場。日本ではどうなるのか
医療分野におけるAI活用の最前線について、東京大学 医科学研究所 国際先端医療社会連携研究部門の湯地晃一郎特任准教授に聞いた。米英で疾病の「診断」を下すAIドクターが登場している中、日本の医療はどう変わりつつあるのだろうか。
関連リンク
Copyright © ITmedia, Inc. All Rights Reserved.
からの記事と詳細 ( DeepMindのAIシステム、競技プログラミングで人間と互角の成績 - @IT )
https://ift.tt/Efiu6KF
No comments:
Post a Comment